Journal of Traditional and Folk Practices

Ethnobotanical data documentation of Keshkal, Chhattisgarh, India

Deepak Kumar Soni and Sushil Kumar Shahi*

*Bioresources Tech Laboratory, Department of Botany, Guru Ghasidas Vishwavidyalaya, Koni Bilaspur, Chhattisgarh, 495 009, India.

*sushilkshahi@gmail.com

Received: 18 January 2021 Accepted: 30 March 2021

Abstract

Chhattisgarh is a medicinal plant rich state and the medicinal plants are utilized in a sustainable manner by traditional healers in the treatment of incurable diseases. Keshkal is the forest division of Kondagaon District near Kanker district. Traditional healers of this area are very active and treating human diseases effectively. But now days exploitation of the herbal plants is increased and threatening their diversity in this area. Present survey was carried out to document the traditional knowledge of healers and to save the medicinally important plants. The plants used by the four Vaidyas of Keshkal were studied, in which we found that the method of making the medicine used and the treatment of diseases was slightly different, but all had a passion for working in connection with nature. In the process of traditional healing, it was found that ache problems, diabetes, energy tonic, kidney stone, diseases related to men and women were treated more than other diseases. It was also found in the present work that the leaves and roots of 49 medicinal plants of 30 families were used more than other plant parts for medicine. Keeping in mind the knowledge privacy of traditional healers, the methods of making medicines by them have not been included in the presented publication.

Keywords: Ethnobotany, Medicinal plants, Traditional healers

1. Introduction

Ethnobotanical study is very important in health science which deals with the study of medicinal plants used by aboriginal people. Powers (1874) coined the term "aboriginal botany" was remained accepted for more than 20 years. The first report of term ethnobotany was published by Harshberger (1895), which was the pioneer step towards ethnobotancal studies. In India, Jain (1964) have described the which is being used methodology documentation by ethnobotanists. The development of drugs using medicinal plants used by aboriginal people is known as the ethnomedicines are well practiced in this area by traditional healers using medicinal plants sustainably.

Chhattisgarh is the herbal plants rich state of India and have much potential in herbal plant research. The level of research in Chhattisgarh was such that after separation from Madhya Pradesh, many researchers took information on medicinal plants from them, but did not brought them any recognition in any way. As can be said from the previous research. Tirkey (2006) collected and studied the plants used by aboriginal people of Chhattisgarh. Kala in 2009, studied on Aboriginal uses and management of ethnobotanical species in deciduous forests. Sahu and his colleagues studied ethnomedicinal plants in 2014 documented the plants being used in healthcare systems by the tribes of Dantewada.

If we talk about Keshkal, then this type of study has been done here for the first time and an attempt has been made to leave their traditional knowledge to the guru-disciple tradition.in this direction, attention of the scientific community should be focused on plants and the disease treatment.

The main objective of this study was to obtain ethnobotanical uses of plants and their conservation status. However many plants were seen as considering rare, endangered and threatened. Also the use patterns of medicinal plants were evaluated to know about difference in practice behavior of traditional healers. Mesfin *et al.*,(2009) mentioned about traditional healers, who believed that wild plants are more effective. Most recent documentation on non-timber forest produce (NTFPs) Chandel et al. (2018) has reported several medicinal plants and their therapeutic properties from Dhamtari forest area.

2. Materials and methods

Keshkal is the forest region that is rich in plant diversity having major sal forest. The geographical area of Keshkal is 1685.810 km² and situated in plain and Bastar plateau (Fig.1). Optimum height from ocean surface is 534 to 834 meters. This forest division has Sal and mixed vegetation. It has four sub-divisions viz., Keshkal, Bade Rajpur, Farasgaon and Bade Dongar with total 1429.458 m² forest area. Total 30.50% of total forest area is occupied by Sal forest consisting of tropical moist deciduous forests, dry deciduous forests and subtropical dry evergreen (Champion and Seth, 1968).

During survey, Camera were used Canon EOS 1200D and Canon IXUS 170 and field note book was maintained. For the conservation purpose, Herbarium specimen was not taken from the field and the data was taken primarily from local traditional healers including the local name of the concerned plant species. However, the plants were further identified on the basis of digital herbarium records and species names were recognized using their local names and related characters of plants viz., leaf, root, shoot and flower and compared with secondary data available in books and internet.

Ethnobotanical data documentation was carried out according to methodology suggested by Jain (1964). In this work, detailed description was obtained from official traditional healers of forest department of Keshkal forest division during September - October 2017 (Table 1). Also photographs were taken during data collection to insure the authentic knowledge about plants and formation of digital herbarium records.

In this survey, medicinally important plants were marked and identified by local traditional healers and

literature available on books and internet sources.
Following traditional healers were participated during documentation:

Table 1. Four different traditional healers were contributed their ethnobotanical knowledge during field investigation.

Site No.	Name of Traditional Healer	Medicinal Plants used (As recorded in the field study)	Locality
1	Vaidyaraj Naval Ram	28	Keshkal
2	Vaidyaraj Sukhram Nag	49	Neljhar (Bade Rajpur)
3	Vaidyaraj Ram Prasad Nishad	41	Pharasgaon
4	Vaidyaraj Jainath Markam	26	Bade Donger (Makdi)

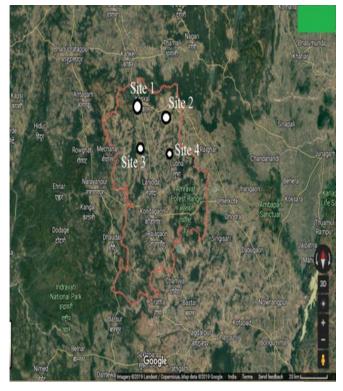


Fig. 1. Map of study site (Retrieved from Google map on 5/07/2019).

3. Results and discussion

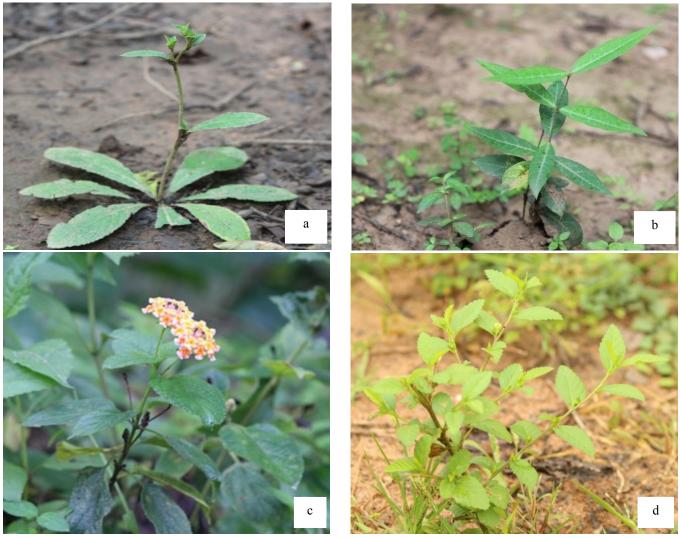

Total plants from Keshkal forest was 49, of 30 families have the tremendous use for the treatment of human diseases (Table 2).

Table 2. Ethnobotanical data of Keshkal forest division of Kondagaon district

SI.No.	Family	Local Name	Scientific Name	Plant part used	Disease treatment
1	Acanthaceae	Kalmegh, Bhui Neem	Andrographis paniculata (Burm.f.) Nees	Panchang (Leaf, Root, Flower, Seed and Stem)	Fever, diabetes
				Leaf	Malaria
2	Amaryllidaceae.	Sudarshan	Crinum asiaticum L.	Root	(Dhatwardhak Sperm enhancer)
3	Anacardiaceae	Chironji	Buchanania lanzan Spreng.	Seed endosperm	Weight gain
4	Apocynaceae	Anantmool	Hemidesmus indicus (L.) R. Br. ex Schult. (Fig.2.b)	Root	Snake bite, Blood purifier, Breast milk enhancer, Sypholis.
ς.	Apocynaceae	Koria	Holarrhena antidysenterica (L.) Wall. ex A. DC.	Root	Diabetes
9	Apocynaceae	Anantmool Type II	Hemidesmus indicus (L.) R. Br.	Root	Breathing disorder
7	Asclipiadaceae	Aank	Calotropis procera (Aiton) Dryand.	Fruit	Ankh aana (Eye discharge)
∞	Asparagaceae	Shatawar	Asparagus recimosus Willd.	Root	Milk formation in breast
6	Asteraceae	Ajgandha	Ageratum conyzoides (L.) L.	Inflorescence	Wounds
10	Asteraceae	Rasna Jadi	Blepharispermum subsessile DC.	Root	Body fitness
11	Asteraceae	Bhrigraj species	Eclipta alba var. alba	Leaf	Hair shining, Eye problem
12	Asteraceae	Mayurshikha	Elephantopus scaber L. (Fig.2a)	Root	Insecticide in cattle
13	Astesraceae	Akarkara	Anacyclus pyrethrum (L.) Lag.	Root and Inflorescence	Toothache
41	Caesalpiniaceae	Amaltash	Cassia fistula L.	Root	Paralysis
15	Caesalpiniaceae	Mahul	Bauhinia vahlii Wight & Arn.	Leaf Root	Purgative Diabetes

16	Caesalpiniaceae	Charota Bhaji	Cassia tora L.	Leaf, Fruit, Whole plant parts	Skin disease
	Celastraceae	Malkangni	Celastrus paniculatus Willd.	Seed	Infertility, Absent minded persons
17	Celastraceae,	Peng	Celastrus paniculatus Willd.	Seed	Ache relief
18	Combretaceae	Harra, Harrad	Terminalia chebula Retz.	Fruit	As antibiotic, in every disease, Health enhancer
19	Dioscoreaceae	Karu kanda	Dioscorea hispida Dennst.	Rhizome	Body fitness
20	Dioscoreaceae	Karuakanda	Dioscorea bulbifera L.	Rhizome	Kidney stone
;	Dipterocarpaceae			Bark	Asthma in Cattle
21		Salai, Saal	Shorea robusta Gaertn.	Bark	White and red discharge in woman
22	Ebenaceae	Tendu	Diospyros melanoxylon, Roxb.	Leaf	Loose motion
23	Euphorbiaceae	Dudhi	Euphorbia hirta L.	Leaf	Itching
24	Euphorbiaceae	Jatropha	Jatropha curcas L.	Root	Cancer (1st & 2nd stage)
25	Fabaceae	Kachnar	Bauhinia variegata L.	Bark	Tonsils
26	Fabaceae	Saalparni	Desmodium gangeticum (L.) DC.	Root	Pneumonia, Cough
27	Fabaceae	Lajwanti	Mimosa pudica L.	Root	To neutralize sex desire
28	Fabaceae	Patal Kumhda (Bedarikand)	Pueraria tuberosa (Willd.) DC.	Tuber	Energy tonic
29	Fahareae	Wajrdanti (Sarphonka) Sarn nhoonka	Tenhrosia nurmusa (L.) Pere	Whole plant	Pleaha
				Root	Kidney stone
30	Fabaceae	Vajradanti	Tephrosia purpurea (L.) Pers.	Root	Snake bite (Karait)

31	Hypoxidaceae	Kali musli	Curculigo orchioides Gaertn.	Root	Energy tonic, Sperm enhancer
32	Tecythidaceae	Kumhhi	Careya arborea	Leaf	Bird flue
70	Lecyminaceae	ramoni	Roxb.	Bark	Fatness, cut and burns
33	Liliaceae	Shataavari	Asparagus racemosus Willd.	Root	Body fitness
34	Lythraceae	Senha	Lagerstroemia parviflora Roxb.	Fruit	Pain
35	Malvaceae	Jangli Bhindi	Abelmoschus manihot (L.) Medik.	Root	Pelia
36	Malvaceae	Kamraj	Byttneria herbacea Roxb.	Root	Energy tonic
37	Malvaceae	Atibalaa	Sida acuta Burm.f.	Leaf	Boils
38	Malvaceae	Mahabalaa	Sida cordifolia L.	Leaf	Boils
39	Malvaceae	Balaa	Sida rhombifolia.L. (Fig.2.d)	Leaf	Boils
40	Moraceae	Bargad	Ficus benghalensis L.	Latex	Energy tonic
41	Oleaceae	Hadsingar	Nyctanthes arbor-tristis L.	Root	Bawasir Hemorroides
Ę	Orchidonaga	Rasna banda, Bandargodi,	Dhimohochilis vatura (I) Blima	Leaf	Earache, Paralysis Health tonic Dysentry
2	Oromaacaa	Kamagodi Gavagodi	ruyikinosiyus remsu (E.) Dimile	Leaf and Root	Earache Paralysis, pain, broken
43	Phyllanthaceae	Aamla	Phyllanthus emblica L.	Fruit	Eye problem
44	Primulaceae	Dulli Baybidang	Embelia ribes Burm. f.	Fruit	Stomach ache, pain relief, vermicide
45	Pteridaceae	Bhusri ronda	Adiantum sp.	Leaves	Wounds
46	Rubiaceae	Manhar	Randia dumetorum (Retz.) Lam.	Fruit	Bodypain, Infertility in women
47	Selaginellaceae	Bhui kharounda	Selaginella lepidophylla (Hook. & Grev.) Spring	Leaves	Ulcers
48	Smilacaceae	Ram datum	Smilax zeylanica L.	Root	Dhat
49	Sterculiaceae	Jarka	Pterospermum acerifolium (L.) Willd.	Root	broken bones
50	Verbenaceae	Lantana	Lantana camera L. (Fig.2. c)	Whole plant	Cold, Viral fever

Fig. 2. Digital herbarium of some documented Medicinal plants of Keshkal: a. *Elephantopus scaber* L.; b. *Hemidesmus indicus* (L.) R. Br.; c. *Lantana camera* L.; d. *Sida rhombifolia* L.

Totally, 31 plant families were documented in which family Fabaceae (Fig.3) mostly used in traditional healing followed by Asteraceae and Malavaceae.

Traditional healers don't uproot the plants, they utilize the plants sustainable and harvest the desired plant part and leave the plant in their wild locality for further regrowth and use. In the study it was observed that the use of root and leaf is the major part of traditional healing (Fig.5).

Documentation of traditional plants in Bastar area is done since long (Chandra U,1991), and the study of ethnobotanical uses of medicinal plants in this part of Chhattisgarh is a subject of curiosity of scientific community (Rai and Nath, 2005; Sahu, *et al.* 2014; Sinha *et al.* 2016). But present study is not only documentation, but also an attempt to give priority to traditional healers and the data was recorded accordingly on the spot. The area of study was almost untouched by scientific community since long time and

the effort was done to promote the traditional healers and their tireless effort in this area.

Elephantopus scaber L. is previously reported as antiasthmatic (Sagar and Sahoo, 2012), antibacterial (Anitha et al., 2012), wound healing properties (Singh et al., 2005), and presently it has been documented as wound healing in cattle which also supports previous studies. We also want to give emphasis on its vernacular name i.e. Mayurshikha, which was mainly known for the plant Adiantum flabellulatum L. (Shahriar and Kabir 2011).

Many vernacular names were studied has been obtained as *Bhui Neem*, *Sudarshan*, *Chironji*, *Koria*, *Rasna Jadi*, *Mayurshikha*, *Mahul*, *Charota Bhaji*, *Malkangni*, *Peng*, *Karu kanda*, *Karuakanda*, *Salai*, *Saalparni*, *Patal Kumhda*, (*Bedarikand*) *Sarp phoonka*, *Kali musli*, *Kumbhi*, *Senha*, *Jangli Bhindi*, *Kamraj*, *Atibalaa*, *Mahabalaa*, *Balaa*, *Hadsingar*, *Rasna*, *banda*, *Bandargodi*, *Kamagodi*, *Gavagodi*, *Dulli*

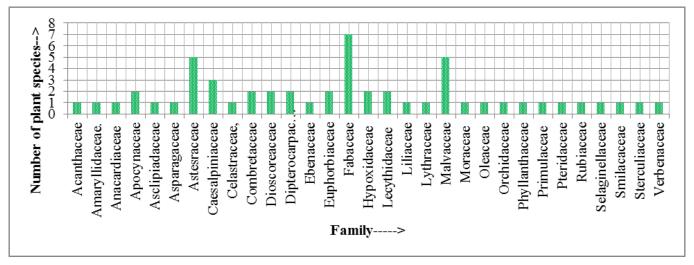


Fig. 3. Bar graph showing the data of plants and their family used for the treatment of different human diseases by the traditional healer of Keshkal

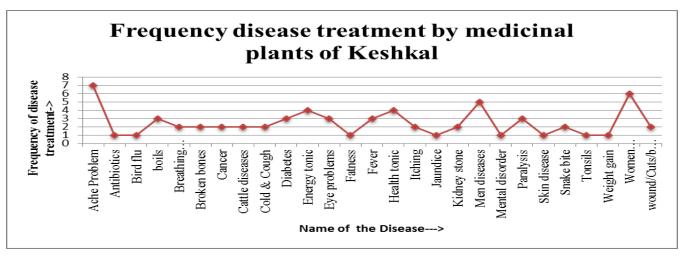


Fig. 4. A line graph showing the frequency of disease treatment by using medicinal plants of Keshkal.

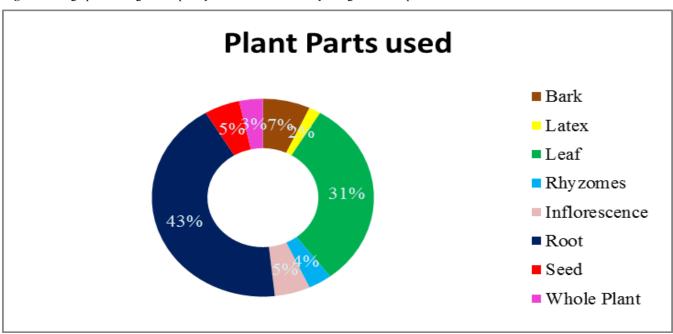


Fig.5. Doughnut graph showing the percentage value of plant part used for the treatment of human diseases by traditional healers.

Baybidang, Bhusri ronda, Manhar, Bhui kharounda, Ram datum, Jarka, which will be helpful for future researchers in Chhattisgarh.

Root and leaf are widely used by traditional healers 43% and 31% accordingly, which was reported during the study, which is a supportive statement for other medicinal plant studies (Minu *et al.*, 2012; Sahu *et al.*, 2014; Painkra *et al.*, 2015).

4. Conclusion

Keshkal forest division of Kondagaon district is a less explored region of Chhattisgarh in which medicinal plant diversity is abundant and they are being utilized by traditional healers sustainably. But apart of medicinal uses, they are illegally being utilized by villagers. Because this valley region is currently developing, so the diversity is also affected by construction of buildings and roads. However present documentation is based on primary data obtained by the extensive field survey with certified traditional healers present in the locality. Due to their own methodology and secrecy, the method of herbal formulation is not presented to the paper. The diseases treated by traditional healers were documented to assess the plant importance to that area and found many medicinal plants are being used to treat human and cattle diseases including, Bird flu, Cancer, Paralysis, etc.

Acknowledgements

Authors would like to thank Head of the Department, Dr. S. K. Shahi, Botany, GGV, Bilaspur and Guru Ghasidas Vishwavidyalaya, Bilaspur for providing research facilities. Also thankful to Shree D. S. Ganveer (DFO, Keshkal Forest) and research team and all the traditional healers of Keshkal forest division for their valuable and tireless contribution during field work and data documentation.

References

Anitha, V. T., Marimuthu, J., & Jeeva, S. 2012. Anti-bacterial studies on *Hemigraphis colorata* (Blume) HG Hallier and *Elephantopus scaber* L. *Asian Pacific journal of tropical medicine*, 5(1),pp 52-57.

Champion, H.G. and Seth, S.K., 1968. A revised survey of the forest types of India. *Govt. of India Publications*, 1(1), pp.297-299.

Chandra, U. 1991. Ethnobotanical studies in Abujhmarh (Bastar), India. *Indian Journal of Plant Genetic Resources*, 4(2), pp. 73-81.

Harshberger, J.W., 1896. The purposes of ethno-botany. *Botanical gazette*, 21(3), pp.146-154.

Jain, S.K., 1964. The role of botanist in folklore research. *Folklore*, 5(4), pp.145-150.

Kala, C. P. 2009. Aboriginal uses and management of ethnobotanical species in deciduous forests of Chhattisgarh state in India. *Journal of Ethnobiology and Ethnomedicine*, *5*(1), pp.1-9.

Mesfin, F., Demissew, S. and Teklehaymanot, T., 2009. An ethnobotanical study of medicinal plants in Wonago Woreda, SNNPR, Ethiopia. *Journal of Ethnobiology and Ethnomedicine*, 5 (1), pp.1-18.

Minu, V., Harsh, V., Ravikant, T., Paridhi, J., & Noopur, S. 2012. Medicinal plants of Chhattisgarh with anti-snake venom property. *Int J Curr Pharm Rev Res*, 3(2), pp. 1-10.

Painkra, V. K., Jhariya, M. K., & Raj, A. 2015. Assessment of knowledge of medicinal plants and their use in tribal region of Jashpur district of Chhattisgarh, India. *Journal of Applied and Natural Science*, 7(1), pp. 434-442.

Powers, S.J. 1875. Aboriginal botany. *California Academy of Sciences Proceedings* 5, pp. 373-379.

Rai, R., & Nath, V. 2005. Some lesser known oral herbal contraceptives in folk claims as anti-fertility and fertility induced plants in Bastar region of Chhattisgarh. *Journal of Natural Remedies*, 5(2),pp 153-159.

Sagar, R., & Sahoo, H. B. 2012. Evaluation of antiasthmatic activity of ethanolic extract of *Elephantopus scaber* L. leaves. *Indian journal of pharmacology*, 44(3),pp 398-401.

Sahu, P. K., Masih, V., Gupta, S., Sen, D. L., & Tiwari, A. 2014. Ethnomedicinal plants used in the healthcare systems of tribes of Dantewada, Chhattisgarh India. *American Journal of Plant Sciences*, 5, pp. 1632-1643.

Sahu, P. K., Masih, V., Gupta, S., Sen, D. L., & Tiwari, A. 2014. Ethnomedicinal plants used in the healthcare systems of tribes of Dantewada, Chhattisgarh India. *American Journal of Plant Sciences*, 2014.pp. 1632-1683

Shahriar, M., & Kabir, S. 2011. Analgesic activity of *Adiantum flabellulatum*. *Dhaka University Journal of Biological Sciences*, 20 (1), pp. 91-93.

Singh, S. D. J., Krishna, V., Mankani, K. L., Manjunatha, B. K., Vidya, S. M., & Manohara, Y. N. 2005. Wound healing activity of the leaf extracts and deoxyelephantopin isolated from *Elephantopus scaber* Linn. *Indian journal of pharmacology*, 37(4), pp. 238-242.

Sinha, M. K., Kanungo, V. K., & Naik, M. L. 2016. Ethnobotany in relation to livelihood security in district Bastar of Chhattisgarh state with special reference to non-timber forest produces. *Current Botany*, 7, pp. 27-33.

Tirkey, A. 2006. Some Ethnomedicinal plants of family Fabaceae of Chhattisgarh state. As can be said from the previous research, *Indian Journal of Traditional Knowledge*, 5 (4), pp. 551-553.